Фотонный космический транспорт

«- Давно летаешь на фотонных ракетах?

Вместо ответа я отвернул лацкан куртки, показывая ему медаль, на которой было выгравировано «Сто световых лет».

А. КОЛПАКОВ «Гриада».

Фотонный  двигатель – это  реактивный двигатель, тяга которого создается за счет истечения квантов электромагнитного излучения или фотонов. Главным преимуществом такого двигателя является максимально-возможная в рамках релятивистской механики скорость истечения, равная скорости света в вакууме.

Если найти условную точку центра Солнечной системы, то более десятка ближайших к нам звёзд расположатся в сфере радиусом в одиннадцать световых лет. Фотонные звездолёты, относящиеся к классу субсветовых, позволили бы их экипажам достичь этих звёзд, исследовать их системы и вернуться обратно в течение жизни одного поколения.

Немецкий теоретик  ракетной техники Э. Зенгер (1905-1964) ещё перед  второй мировой войной высказал принципиальную идею двигателя с фотонной тягой. В основу идеи легли две фантастические предпосылки: изобретение «абсолютного зеркала», способного отражать  и фокусировать кванты  света сразу всех длин волн, а также гамма-лучи; получение энергоносителя в виде антиматерии. Книга Э. Зенгера «Механика фотонных ракет» была переведена  на русский язык и вышла в свет в 1956 году.

Однако в романе О. СТЭПЛДОНА «Последние и первые люди» (1930) уже было дано первое в мировой литературе подробное и научно правдоподобное описание космического корабля на аннигиляционном двигателе. Хотя сам автор идеи был философом и не считал себя фантастом.

С тех пор «классическим» считается  фотонный звездолет, состоящий из жесткого, укрепленного силовым каркасом параболического зеркала, соединенного длинной фермой с жилыми отсеками, складами и лабораториями. Ёмкости с антивеществом и веществом размещены на внешней поверхности зеркала. Соотношение размеров этих емкостей и корабля в целом позволяет предположить, что это объект не столько конструкторского, сколько художественного творчества.

Практически все известные и даже запатентованные компоновки фотонных звездолетов не учитывают того обстоятельства, что, по объективным расчётам, масса запасаемого на них антивещества (и вообще рабочего тела) должна в десятки и сотни раз превышать массу самой конструкции корабля.

Относительно подходящего топлива для фотонного двигателя в фантастике отразились альтернативные мнения. К фотонному космическому транспорту по основным характеристикам весьма близки анамнезонные звездолёты из романа И. ЕФРЕМОВА «Туманность Андромеды». Однако анамнезон – это обычное вещество с разрушенными связями между элементарными частицами. Следовательно, оно более компактно, чем вещество, и не требует особой защитной оболочки для хранения, как антивещество. Два маленьких плюса по сравнению с одним гигантским минусом: запасы анамнезона в дорогу по своему объёму сравнятся с объёмом небольшой планеты.

Зато ЕФРЕМОВ проработал одну важную деталь, которой большинство фантастов пренебрегает: запуск звездолёта, вид изнутри.

«Пел Лин передвинул рукоятку анамезонных двигателей. Четыре высоких цилиндра из нитрида бора, видимые в специальную прорезь пульта, засветились изнутри. Яркое зелёное пламя забилось в них бешеной молнией, заструилось и закрутилось четырьмя плотными спиралями. Там, в носовой части корабля, сильное магнитное поле облекло стенки моторных сопел, спасая их от немедленного разрушения.

Астронавигатор передвинул рукоять дальше. Сквозь зелёную вихревую стенку стал виден направляющий луч — сероватый поток К-частиц. Ещё движение, и вдоль серого луча прорезалась ослепительная фиолетовая молния — сигнал, что анамезон начал своё стремительное истечение…».

Соло Хан, по сравнению со своим коллегой, напоминает тракториста с рычагами управления, а многие прочие персонажи походят на лифтёров, пользующихся набором кнопок…

Доработка первоначальной идеи Э. Зенгера обнаруживается в повести братьев Стругацких «Путь на Амальтею», где фантасты пользуются определением  «фотонный». Но вновь, как и в романе И. ЕФРЕМОВА, конструкции «фотонных грузовиков» не несут в себе никакого антивещества!  Это не случайно. Главным недостатком фотонного двигателя является низкий КПД цепочки преобразования энергии от первичного источника до струи фотонов. Для прямого получения оптических квантов и гамма-квантов А. и Б. Стругацкие попросту заменили антивещество на дейтериево-тритиевую плазму. Эта идея не с потолка!   В 1950 году академики А. Д. Сахаров и И. Е. Тамм предложили использовать магнитное поле для удержания плазмы. Магнитное поле ограничивает движение заряженных частиц высокотемпературной плазмы и термоизолирует ее от стенок камеры, в которой она создается.

Направленная реактивная тяга в повестях «Путь на Амальтею» и «Стажёры» случаях создаётся гигантским сферическим зеркалом, каждый сантиметр которого должен ежесекундно отражать количество тепла, достаточное, чтобы выплавить несколько тонн стали.

«Отражатель – самый главный и самый хрупкий элемент фотонного привода, гигантское параболическое зеркало, покрытое пятью слоями сверхстойкого мезовещества. В зарубежной литературе отражатель часто называют «сэйл» — парус. В фокусе параболоида ежесекундно взрываются, превращаясь в излучение, миллионы порций дейтериево-тритиевой плазмы. Поток бледно-лиловатого пламени бьёт в поверхность отражателя и создаёт силу тяги. При этом в слое мезовещества возникают исполинские перепады температур и мезовещество постепенно – слой за слоем – выгорает. Кроме того, отражатель непрерывно разъедается метеоритной коррозией. И если при включённом двигателе отражатель разрушится у основания, там, где к нему примыкает толстая труба фотореактора, корабль превратится в мгновенную бесшумную вспышку. Поэтому отражатели фотонных кораблей меняют через каждые сто астрономических единиц полёта. Поэтому контролирующая система непрерывно замеряет состояние рабочего слоя по всей поверхности отражателя» (А. и Б. СТРУГАЦКИЕ «Путь на Амальтею»).

Необходимость частых капитальных ремонтов зеркал позволяет использовать фотонные грузовики и лайнеры только на межпланетных трассах Солнечной системы. Строительство фотонного звездолёта  (проект «Хиус-Молния») находится  ещё на начальной стадии, а затем, видимо, и вовсе прекращается, поскольку в мире Полдня, найден способ движения в гиперпространстве. Фотонный космический транспорт морально устаревает…

Его недолгий гипотетический расцвет пришёлся на тот период отечественной фантастики, когда широкого знакомства с англоязычной фантастикой в СССР ещё не состоялось, зато активно творил Г. МАРТЫНОВ. Да и у того в романе «Гость из бездны» находим такие строки: «Первая фотонная ракета – «Ленин», казавшаяся сейчас архаическим пережитком, покинула Солнечную систему восемнадцать веков тому назад, в начале двадцать первого века христианской веры. Первые одиннадцать звездолётов были фотонными, и, точно в музее истории космических перелётов в пространстве находились корабли всевозможных конструкций – живая история звездолётостроения за последние восемнадцать столетий».

Одиннадцать фотонных звездолётов, построенных друг за другом… Вряд ли все они относились к единой типовой конструкции. Исходя из творческой натуры любого  настоящего конструктора, можно предполагать, что каждая последующая модель  звездолёта данного типа должна нести в себе некие  новые технические доработки и решения. Драматическим был, видимо, отказ от технического детища, лелеемого на протяжении  многих веков. За рамками романа остались некоторые вариации фотонных звездолётов, какие теоретически могли быть опробованы при постановке различных исследовательских задач. К примеру, на ближних межпланетных трассах могло быть опробование  использования электромагнитных квантов из диапазона более длинных волн («радиодвигатель»). «Радиодвигатель» значительно упрощает задачу фокусировки «реактивной струи», но резко снижает КПД  всего движительного комплекса.

«…Квантовая ракета — то же, что  и  фотонная, но вместо фотонов она отбрасывает кванты невидимого  света  (например, ультракороткие  радиоволны)» – пояснял А. КОЛПАКОВ в романе «Гриада».

Существуют несколько вариантов компоновок фотонных звездолетов, предполагающих использование в качестве рабочего тела вещества окружающего пространства. Это позволяет вдвое (а при возможности производства антивещества на борту –  и более) сократить бортовые запасы, но требует создания электромагнитных (или других полевых) массозаборников диаметром несколько десятков тысяч километров.

Очевидный вариант представляет собой соединенные  направленными друг к другу остриями воронки жестких частей массозаборника и сопла-зеркала с расположенными на них электромагнитами, создающими полевые продолжения того и другого. В местах их соединения расположены обитаемые отсеки, энергоустановка, хранилище антивещества.

Ряд учёных полагает, что как для сбора окружающего вещества, так и для фокусировки пучка фотонов с использованием газового или пылевого зеркала, достаточно соленоида, состоящего из одного витка, расположенного в плоскости, перпендикулярной направлению полета. Звездолет при этом может иметь форму более или менее обтекаемого симметричного относительно центральной оси тела, окруженного токовым кольцом на пилонах, либо диска, с расположением токопровода по периметру. В случае использования в качестве «реактивной струи» электромагнитных волн радиодиапазона звездолет может представлять собой, например, коническую ферму, на вершине которой разместится отсек экипажа, по периметру основания – генераторы радиоволн и энергоблоки.  Технологические трудности, которые придётся преодолеть при реализации всех представленных проектов, неимоверны.

И всё же идею фотонного космического транспорта рановато списывать как безнадёжную. Действительно, серьёзную проблему представляет необходимость охлаждать зеркало. О фантастическом мезовеществе, конечно, приходится пока только мечтать. Зато гораздо ближе к реальности сверхпроводники, благодаря которым возникающие микротоки не будут встречать сопротивления, а стало быть, перегрев будет минимальным.

По сведениям, промелькнувшим в авторитетном источнике, антивещество может быть заменено на водородную плазму, получаемую при взаимодействии атомов водорода с антипротонами. А первоочередные астроинженерные задачи будут поставлены не где-то в созвездии Волопаса, а гораздо ближе, в пределах доступности космического транспорта новых поколений.

Закладка Постоянная ссылка.

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *